Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.150
Filter
1.
Arch Insect Biochem Physiol ; 115(4): e22111, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628055

ABSTRACT

In insects, the expression of 20E response genes that initiate metamorphosis is triggered by a pulse of 20-hydroxyecdysone (20E). The 20E pulse is generated through two processes: synthesis, which increases its level, and inactivation, which decreases its titer. CYP18A1 functions as an ecdysteroid 26-hydroxylase and plays a role in 20E removal in several representative insects. However, applying 20E degradation activity of CYP18A1 to other insects remains a significant challenge. In this study, we discovered high levels of Hvcyp18a1 during the larval and late pupal stages, particularly in the larval epidermis and fat body of Henosepilachna vigintioctopunctata, a damaging Coleopteran pest of potatoes. RNA interference (RNAi) targeting Hvcyp18a1 disrupted the pupation. Approximately 75% of the Hvcyp18a1 RNAi larvae experienced developmental arrest and remained as stunted prepupae. Subsequently, they gradually turned black and eventually died. Among the Hvcyp18a1-depleted animals that successfully pupated, around half became malformed pupae with swollen elytra and hindwings. The emerged adults from these deformed pupae appeared misshapen, with shriveled elytra and hindwings, and were wrapped in the pupal exuviae. Furthermore, RNAi of Hvcyp18a1 increased the expression of a 20E receptor gene (HvEcR) and four 20E response transcripts (HvE75, HvHR3, HvBrC, and HvαFTZ-F1), while decreased the transcription of HvßFTZ-F1. Our findings confirm the vital role of CYP18A1 in the pupation, potentially involved in the degradation of 20E in H. vigintioctopunctata.


Subject(s)
Coleoptera , Insect Proteins , Animals , Insect Proteins/genetics , Insect Proteins/metabolism , Coleoptera/genetics , Larva/genetics , Larva/metabolism , Insecta/metabolism , Metamorphosis, Biological , Ecdysterone/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , RNA Interference , Pupa/genetics , Pupa/metabolism
2.
Pestic Biochem Physiol ; 200: 105845, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582577

ABSTRACT

7-dehydrocholesterol (7-DHC) is a key intermediate product used for biosynthesis of molting hormone. This is achieved through a series of hydroxylation reactions catalyzed by the Halloween family of cytochrome P450s. Neverland is an enzyme catalyzes the first reaction of the ecdysteroidogenic pathway, which converts dietary cholesterol into 7-DHC. However, research on the physiological function of neverland in orthopteran insects is lacking. In this study, neverland from Locusta migratoria (LmNvd) was cloned and analyzed. LmNvd was mainly expressed in the prothoracic gland and highly expressed on days 6 and 7 of fifth instar nymphs. RNAi-mediated silencing of LmNvd resulted in serious molting delays and abnormal phenotypes, which could be rescued by 7-DHC and 20-hydroxyecdysone supplementation. Hematoxylin and eosin staining results showed that RNAi-mediated silencing of LmNvd disturbed the molting process by both promoting the synthesis of new cuticle and suppressing the degradation of the old cuticle. Quantitative real-time PCR results suggested that the mRNA expression of E75 early gene and chitinase 5 gene decreased and that of chitin synthase 1 gene was markedly upregulated after knockdown of LmNvd. Our results suggest that LmNvd participates in the biosynthesis process of molting hormone, which is involved in regulating chitin synthesis and degradation in molting cycles.


Subject(s)
Locusta migratoria , Molting , Animals , Molting/genetics , Ecdysone/metabolism , Locusta migratoria/genetics , Locusta migratoria/metabolism , RNA Interference , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Insect Proteins/metabolism
3.
Pestic Biochem Physiol ; 200: 105812, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582584

ABSTRACT

Indoxacarb has been widely utilized in agricultural pest management, posing a significant ecological threat to Bombyx mori, a non-target economic insect. In the present study, short-term exposure to low concentration of indoxacarb significantly suppressed the oxidative phosphorylation pathway, and resulted in an accumulation of reactive oxygen species (ROS) in the midgut of B. mori. While, the ATP content exhibited a declining trend but there was no significant change. Moreover, indoxacarb also significantly altered the transcription levels of six autophagy-related genes, and the transcription levels of ATG2, ATG8 and ATG9 were significantly up-regulated by 2.56-, 1.90-, and 3.36-fold, respectively. The protein levels of ATG8-I and ATG8-II and MDC-stained frozen sections further suggested an increase in autophagy. Furthermore, the protein level and enzyme activity of CASP4 showed a significant increase in accordance with the transcription levels of apoptosis-related genes, indicating the activation of the apoptotic signaling pathway. Meanwhile, the induction of apoptosis signals in the midgut cells triggered by indoxacarb was confirmed through TUNEL staining. These findings suggest that indoxacarb can promote the accumulation of ROS by inhibiting the oxidative phosphorylation pathway, thereby inducing autophagy and apoptosis in the midgut cells of B. mori.


Subject(s)
Bombyx , Oxazines , Animals , Reactive Oxygen Species/metabolism , Bombyx/physiology , Oxidative Phosphorylation , Apoptosis , Autophagy , Insect Proteins/genetics , Insect Proteins/metabolism
4.
Pestic Biochem Physiol ; 199: 105775, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458682

ABSTRACT

Insect cuticular protein (ICP) plays an important role in insect growth and development. However, research on the role of ICP in insecticide resistance is very limited. In this study, insect cuticular protein genes LCP17 and SgAbd5 were cloned and characterized in Helicoverpa armigera based on previous transcriptome data. The functions of LCP17 and SgAbd5 genes in fenvalerate resistance were assessed by RNA interference (RNAi), and their response to fenvalerate was further detected. The results showed that LCP17 and SgAbd5 were overexpressed in the fenvalerate-resistant strain comparing with a susceptible strain. The open reading frames of LCP17 and SgAbd5 genes were 423 bp and 369 bp, encoding 141 and 123 amino acids, respectively. LCP17 and SgAbd5 genes were highly expressed in the larval stage, but less expressed in the adult and pupal stages. The expression level of LCP17 and SgAbd5 genes increased significantly after fenvalerate treatment at 24 h. When the cotton bollworms larvae were exposed to fenvalerate at LD50 level, RNAi-mediated silencing of LCP17 and SgAbd5 genes increased the mortality from 50.68% to 68.67% and 63.89%, respectively; the mortality increased to even higher level, which was 73.61%, when these two genes were co-silenced. Moreover, silencing of these two genes caused the cuticle lamellar structure to become loose, which led to increased penetration of fenvalerate into the larvae. The results suggested that LCP17 and SgAbd5 may be involved in the resistance of cotton bollworm to fenvalerate, and LCP17 and SgAbd5 could serve as potential targets for H. armigera control.


Subject(s)
Insecticides , Moths , Nitriles , Pyrethrins , Animals , Insecticides/toxicity , 60627 , Insect Proteins/genetics , Insect Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Moths/genetics , Moths/metabolism , Larva/genetics , Larva/metabolism
5.
Pestic Biochem Physiol ; 199: 105797, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458690

ABSTRACT

Antennae and legs (primarily the tarsal segments) of insects are the foremost sensory organs that contact a diverse range of toxic chemicals including insecticides. Binding proteins expressed in the two tissues are potential molecular candidates serving as the binding and sequestering of insecticides, like chemosensory proteins (CSPs). Insect CSPs endowed with multiple roles have been suggested to participate in insecticide resistance, focusing mainly on moths, aphids and mosquitos. Yet, the molecular underpinnings underlying the interactions of cerambycid CSPs and insecticides remain unexplored. Here, we present binding properties of three antenna- and tarsus-enriched RhorCSPs (RhorCSP1, CSP2 and CSP3) in Rhaphuma horsfieldi to eight insecticide classes totaling 15 chemicals. From the transcriptome of this beetle, totally 16 CSP-coding genes were found, with seven full-length sequences. In phylogeny, these RhorCSPs were distributed dispersedly in different clades. Expression profiles revealed the abundant expression of RhorCSP1, CSP2 and CSP3 in antennae and tarsi, thus as representatives for studying the protein-insecticide interactions. Binding assays showed that the three RhorCSPs were tuned differentially to insecticides but exhibited the highest affinities with hexaflumuron, chlorpyrifos and rotenone (dissociation constants <13 µM). In particular, RhorCSP3 could interact strongly with 10 of tested insecticides, of which four residues (Tyr25, Phe42, Val65 and Phe68) contributed significantly to the binding of six, four, three and four ligands, respectively. Of these, the binding of four mutated RhorCSP3s to a botanical insecticide rotenone was significantly weakened compared to the wildtype protein. Furthermore, we also evidenced that RhorCSP3 was a broadly-tuned carrier protein in response to a wide variety of plant odorants outside insecticides. Altogether, our findings shed light on different binding mechanisms and odorant-tuning profiles of three RhorCSPs in R. horsfieldi and identify key residues of the RhorCSP3-insecticide interactions.


Subject(s)
Coleoptera , Insecticides , Animals , Insecticides/pharmacology , Insecticides/metabolism , Ankle , Rotenone , Coleoptera/genetics , Coleoptera/metabolism , Insecta/genetics , Transcriptome , Phylogeny , Insect Proteins/metabolism , Arthropod Antennae/metabolism , Gene Expression Profiling
6.
Insect Biochem Mol Biol ; 168: 104108, 2024 May.
Article in English | MEDLINE | ID: mdl-38552808

ABSTRACT

The immune system of Manduca sexta has been well studied to understand molecular mechanisms of insect antimicrobial responses. While evidence supports the existence of major immune signaling pathways in this species, it is unclear how induced production of defense proteins is specifically regulated by the Toll and Imd pathways. Our previous studies suggested that diaminopimelic acid-type peptidoglycans (DAP-PG) from Gram-negative and some Gram-positive bacteria, more than Lys-type peptidoglycans (Lys-PG) from other Gram-positive bacteria, triggers both pathways through membrane-bound receptors orthologous to Drosophila Toll and PGRP-LC. In this study, we produced M. sexta proSpätzle-1 and proSpätzle-2 in Sf9 cells, identified their processing enzymes, and used prophenoloxidase activating protease-3 to activate the cytokine precursors. After Spätzle-1 and -2 were isolated from the reaction mixtures, we separately injected the purified cytokines into larval hemocoel to induce gene transcription in fat body through the Toll pathway solely. On the other hand, we treated a M. sexta cell line with E. coli DAP-PG to only induce the Imd pathway and target gene expression. RNA-Seq analysis of the fat body and cultured cells collected at 0, 6, and 24 h after treatment indicated that expression of diapausin-4, -10, -12, -13, cecropin-2, -4, -5, attacin-5, -11, and lebocin D is up-regulated predominantly via Toll signaling, whereas transcription of cecropin-6, gloverin, lysozyme-1, and gallerimycin-2 is mostly induced by DAP-PG via Imd signaling. Other antimicrobial peptides are expressed in response to both pathways. Transcripts of most Toll-specific genes (e.g., lebocin D) peaked at 6 h, contrasting the gradual increase and plateauing of drosomycin mRNA level at 24-48 h in Drosophila. We also used T (oll)-I (md) ratios to estimate relative contributions of the two pathways to transcriptional regulation of other components of the immune system. The differences in pathway specificity and time course of transcriptional regulation call for further investigations in M. sexta and other insects.


Subject(s)
Cecropins , Manduca , Animals , Escherichia coli/genetics , Manduca/metabolism , Peptidoglycan , Cecropins/metabolism , Insect Proteins/metabolism , Cytokines/metabolism , Drosophila/metabolism
7.
Insect Biochem Mol Biol ; 168: 104089, 2024 May.
Article in English | MEDLINE | ID: mdl-38485097

ABSTRACT

In insects, cuticle proteins interact with chitin and chitosan of the exoskeleton forming crystalline, amorphic or composite material structures. The biochemical and mechanical composition of the structure defines the cuticle's physical properties and thus how the insect cuticle behaves under mechanical stress. The tissue-specific ratio between chitin and chitosan and its pattern of deacetylation are recognized and interpreted by cuticle proteins depending on their local position in the body. Despite previous research, the assembly of the cuticle composites in time and space including its functional impact is widely unexplored. This review is devoted to the genetics underlying the temporal and spatial distribution of elastic proteins and the potential function of elastic proteins in insects with a focus on Resilin in the fruit fly Drosophila. The potential impact and function of localized patches of elastic proteins is discussed for movements in leg joints, locomotion and damage resistance of the cuticle. We conclude that an interdisciplinary research approach serves as an integral example for the molecular mechanisms of generation and interpretation of the chitin/chitosan matrix, not only in Drosophila but also in other arthropod species, and might help to synthesize artificial material composites.


Subject(s)
Chitosan , Animals , Chitin/metabolism , Insecta/genetics , Insecta/metabolism , Insect Proteins/metabolism , Drosophila/metabolism , Locomotion , Genetic Background
8.
Cell Mol Life Sci ; 81(1): 127, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472536

ABSTRACT

Reproduction, a fundamental feature of all known life, closely correlates with energy homeostasis. The control of synthesizing and mobilizing lipids are dynamic and well-organized processes to distribute lipid resources across tissues or generations. However, how lipid homeostasis is precisely coordinated during insect reproductive development is poorly understood. Here we describe the relations between energy metabolism and reproduction in the silkworm, Bombyx mori, a lepidopteran model insect, by using CRISPR/Cas9-mediated mutation analysis and comprehensively functional investigation on two major lipid lipases of Brummer (BmBmm) and hormone-sensitive lipase (BmHsl), and the sterol regulatory element binding protein (BmSrebp). BmBmm is a crucial regulator of lipolysis to maintain female fecundity by regulating the triglyceride (TG) storage among the midgut, the fat body, and the ovary. Lipidomics analysis reveals that defective lipolysis of females influences the composition of TG and other membrane lipids in the BmBmm mutant embryos. In contrast, BmHsl mediates embryonic development by controlling sterol metabolism rather than TG metabolism. Transcriptome analysis unveils that BmBmm deficiency significantly improves the expression of lipid synthesis-related genes including BmSrebp in the fat body. Subsequently, we identify BmSrebp as a key regulator of lipid accumulation in oocytes, which promotes oogenesis and cooperates with BmBmm to support the metabolic requirements of oocyte production. In summary, lipid homeostasis plays a vital role in supporting female reproductive success in silkworms.


Subject(s)
Bombyx , Animals , Female , Bombyx/genetics , Bombyx/metabolism , Oogenesis , Ovary , Embryonic Development , Lipids , Insect Proteins/metabolism
9.
Int J Mol Sci ; 25(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474187

ABSTRACT

Pheromone-binding proteins (PBPs) are specific odorant-binding proteins that can specifically recognize insect pheromones. Through transcriptional analysis of the antennae of adult Endoclita signifer, EsigPBP3 was discovered and identified, and EsigPBP3 was found to be highly expressed in the antennae of male moths. Based on the binding characteristics and ability of EsigPBP3, we can find the key ligands and binding site to consider as a target to control the key wood bore E. signifier. In this study, the fluorescence competitive binding assays (FCBA) showed that EsigPBP3 had a high binding affinity for seven key eucalyptus volatiles. Molecular docking analysis revealed that EsigPBP3 had the strongest binding affinity for the sexual pheromone component, (3E,7E)-4,7,11-trimethyl-1,3,7,10-dodecatetraene. Furthermore, same as the result of FCBA, the EsigPBP3 exhibited high binding affinities to key eucalyptus volatiles, eucalyptol, α-terpinene, (E)-beta-ocimene, (-)-ß-pinene, and (-)-α-pinene, and PHE35, MET7, VAL10, PHE38, ILE52, and PHE118 are key sites. In summary, EsigPBP3 exhibits high binding affinity to male pheromones and key volatile compounds and the crucial binding sites PHE35, MET7, VAL10, PHE38, ILE52, and PHE118 can act as targets in the recognition of E. signifier pheromones.


Subject(s)
Eucalyptus , Moths , Receptors, Odorant , Male , Animals , Pheromones/metabolism , Carrier Proteins/metabolism , Eucalyptus/metabolism , Molecular Docking Simulation , Moths/metabolism , Receptors, Odorant/metabolism , Insect Proteins/metabolism
10.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474300

ABSTRACT

Insects utilize seven transmembrane (7TM) odorant receptor (iOR) proteins, with an inverted topology compared to G-protein coupled receptors (GPCRs), to detect chemical cues in the environment. For pest biocontrol, chemical attractants are used to trap insect pests. However, with the influx of invasive insect pests, novel odorants are urgently needed, specifically designed to match 3D iOR structures. Experimental structural determination of these membrane receptors remains challenging and only four experimental iOR structures from two evolutionarily distant organisms have been solved. Template-based modelling (TBM) is a complementary approach, to generate model structures, selecting templates based on sequence identity. As the iOR family is highly divergent, a different template selection approach than sequence identity is needed. Bio-GATS template selection for GPCRs, based on hydrophobicity correspondence, has been morphed into iBio-GATS, for template selection from available experimental iOR structures. This easy-to-use semi-automated workflow has been extended to generate high-quality models from any iOR sequence from the selected template, using Python and shell scripting. This workflow was successfully validated on Apocrypta bakeri Orco and Machilis hrabei OR5 structures. iBio-GATS models generated for the fruit fly iOR, OR59b and Orco, yielded functional ligand binding results concordant with experimental mutagenesis findings, compared to AlphaFold2 models.


Subject(s)
Receptors, Odorant , Animals , Receptors, Odorant/metabolism , Workflow , Odorants , Receptors, G-Protein-Coupled/metabolism , Insecta/metabolism , Insect Proteins/metabolism
11.
J Agric Food Chem ; 72(11): 5682-5689, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446420

ABSTRACT

The chemosensory system plays an important role in the host plants location. Plagiodera versicolora (Coleoptera: Chrysomelidae) is a worldwide leaf-eating forest pest that feeds exclusively on salicaceous trees. There is no function study of odorant binding proteins (OBPs) in P. versicolora. In the current study, we found that PverOBP37 has a high expression in male and female antennae, heads, and legs by quantitative real-time PCR. The binding properties of PverOBP37 to 18 host plant volatiles were determined by fluorescence competition binding assays. The results showed that PverOBP37 could bind to the host plant volatile, o-cymene. Furthermore, four candidate key amino acid residues (F8, Y50, F103, and R107) of PverOBP37 to o-cymene were identified by molecular docking. The functional assay to confirm Y50, F103, and R107 mutations were key amino acid residues of PverOBP37 involved in the binding to o-cymene. Knockdown of PverOBP37 and Y-tube behavioral bioassays of mated females led to a significantly reduced attraction to o-cymene. This study not only revealed the molecular mechanism of PverOBP37 but also suggested that PverOBP37 is essential to detect host plant volatiles as cues to search for egg-laying sites in P. versicolora.


Subject(s)
Coleoptera , Receptors, Odorant , Animals , Female , Cymenes , Odorants , Molecular Docking Simulation , Coleoptera/genetics , Coleoptera/metabolism , Amino Acids/metabolism , Receptors, Odorant/metabolism , Insect Proteins/metabolism , Protein Binding
12.
PLoS Genet ; 20(3): e1011196, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38466721

ABSTRACT

Hematophagous mosquitoes require vertebrate blood for their reproductive cycles, making them effective vectors for transmitting dangerous human diseases. Thus, high-intensity metabolism is needed to support reproductive events of female mosquitoes. However, the regulatory mechanism linking metabolism and reproduction in mosquitoes remains largely unclear. In this study, we found that the expression of estrogen-related receptor (ERR), a nuclear receptor, is activated by the direct binding of 20-hydroxyecdysone (20E) and ecdysone receptor (EcR) to the ecdysone response element (EcRE) in the ERR promoter region during the gonadotropic cycle of Aedes aegypti (named AaERR). RNA interference (RNAi) of AaERR in female mosquitoes led to delayed development of ovaries. mRNA abundance of genes encoding key enzymes involved in carbohydrate metabolism (CM)-glucose-6-phosphate isomerase (GPI) and pyruvate kinase (PYK)-was significantly decreased in AaERR knockdown mosquitoes, while the levels of metabolites, such as glycogen, glucose, and trehalose, were elevated. The expression of fatty acid synthase (FAS) was notably downregulated, and lipid accumulation was reduced in response to AaERR depletion. Dual luciferase reporter assays and electrophoretic mobility shift assays (EMSA) determined that AaERR directly activated the expression of metabolic genes, such as GPI, PYK, and FAS, by binding to the corresponding AaERR-responsive motif in the promoter region of these genes. Our results have revealed an important role of AaERR in the regulation of metabolism during mosquito reproduction and offer a novel target for mosquito control.


Subject(s)
Aedes , Receptors, Steroid , Animals , Female , Humans , Aedes/genetics , Aedes/metabolism , Ecdysone/metabolism , Mosquito Vectors/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Homeostasis/genetics , Insect Proteins/genetics , Insect Proteins/metabolism
13.
Commun Biol ; 7(1): 257, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431762

ABSTRACT

Herbivorous insects employ an array of salivary proteins to aid feeding. However, the mechanisms behind the recruitment and evolution of these genes to mediate plant-insect interactions remain poorly understood. Here, we report a potential horizontal gene transfer (HGT) event from bacteria to an ancestral bug of Eutrichophora. The acquired genes subsequently underwent duplications and evolved through co-option. We annotated them as horizontal-transferred, Eutrichophora-specific salivary protein (HESPs) according to their origin and function. In Riptortus pedestris (Coreoidea), all nine HESPs are secreted into plants during feeding. The RpHESP4 to RpHESP8 are recently duplicated and found to be indispensable for salivary sheath formation. Silencing of RpHESP4-8 increases the difficulty of R. pedestris in probing the soybean, and the treated insects display a decreased survivability. Although silencing the other RpHESPs does not affect the salivary sheath formation, negative effects are also observed. In Pyrrhocoris apterus (Pyrrhocoroidea), five out of six PaHESPs are secretory salivary proteins, with PaHESP3 being critical for insect survival. The PaHESP5, while important for insects, no longer functions as a salivary protein. Our results provide insight into the potential origin of insect saliva and shed light on the evolution of salivary proteins.


Subject(s)
Gene Transfer, Horizontal , Heteroptera , Animals , Insect Proteins/genetics , Insect Proteins/metabolism , Heteroptera/genetics , Heteroptera/metabolism , Salivary Proteins and Peptides/genetics , Salivary Proteins and Peptides/metabolism
15.
Sci Rep ; 14(1): 6225, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38486094

ABSTRACT

Saliva, an oral secretion primarily originating from salivary glands (SGs), exert critical roles in the ongoing evolutionary interaction between insects and plants. However, identifying insect salivary components poses challenges due to the tiny size of insects, low secretion amounts, and the propensity for degradation after secretion. In this study, we developed a transcriptome-based approach to comprehensively analyze the salivary proteins of the short-headed planthopper, Epeurysa nawaii, a species with unique feeding habits on bamboo. A total of 165 salivary proteins were identified, with 114 secretory genes highly and specifically expressed in SGs. Consistent with most phloem-feeding insects, digestive enzymes, calcium-binding proteins, oxidoreductases, and a few previously reported salivary effectors were ubiquitously distributed in E. nawaii saliva. However, we also identified a substantial portion of salivary proteins exhibiting taxonomy specificity, including 60 E. nawaii-specific and 62 Delphacidae-specific proteins. These taxonomy-restricted proteins potentially play a role in insect adaptation to specific host plants. Our study provides an efficient pipeline for salivary protein identification and serves as a valuable resource for the functional characterization of effectors.


Subject(s)
Hemiptera , Salivary Glands , Animals , Salivary Glands/metabolism , Saliva/metabolism , Hemiptera/metabolism , Transcriptome , Salivary Proteins and Peptides/metabolism , Insect Proteins/metabolism
16.
Int J Biol Macromol ; 264(Pt 2): 130631, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453114

ABSTRACT

Gram-negative bacteria binding proteins (GNBPs) have the ability to recognize molecular patterns associated with microbial pathogens (PAMPs), leading to the activation of immune responses downstream. In the genome of Tribolium castaneum, three GNBP genes have been identified; however, their immunological roles remain unexplored. In our study, a GNBP1, designated as TcGNBP1, were identified from the cDNA library of T. castaneum. The coding sequence of TcGNBP1 consisted of 1137 bps and resulted in the synthesis of a protein comprising 378 amino acids. This protein encompasses a signal peptide, a low-complexity region, and a glycoside hydrolase 16 domain. TcGNBP1 was strongly expressed in early adult stages, and mainly distributed in hemolymph and gut. Upon being challenged with Escherichia coli or Staphylococcus aureus, the transcript levels of TcGNBP1 were significantly changed at different time points. Through molecular docking and ELISA analysis, it was observed that TcGNBP1 has the ability to interact with lipopolysaccharides, peptidoglycan, and ß-1, 3-glucan. Based on these findings, it was further discovered that recombinant TcGNBP1 can directly bind to five different bacteria in a Ca2+-dependent manner. After knockdown of TcGNBP1 with RNA interference, expression of antimicrobial peptide genes and prophenoloxidase (proPO) activity were suppressed, the susceptibility of T. castaneum to E. coli or S. aureus infection was enhanced, leading to low survival rate. These results suggest a regulatory mechanism of TcGNBP1 in innate immunity of T. castaneum and provide a potential molecular target for dsRNA-based insect pest management.


Subject(s)
Tribolium , Animals , Tribolium/genetics , Tribolium/metabolism , Carrier Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Staphylococcus aureus/metabolism , Molecular Docking Simulation , Bacteria/metabolism , Gram-Negative Bacteria/metabolism , Immunity, Innate/genetics , Insect Proteins/genetics , Insect Proteins/metabolism
17.
Int J Biol Macromol ; 264(Pt 2): 130778, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467221

ABSTRACT

High population density has been shown to alter insect prophylactic immunity. Toll-Spätzle pathway performs a key function in insect innate immune response. To determine the role of Toll and Spätzle, two main components of Toll-Spätzle pathway, in the density-dependent prophylaxis of Mythimna separata. We identified full-length cDNA encoding the Toll-1 and Spätzle-4 genes in M. separata (designed MsToll-1 and Ms Spätzle-4). Both MsToll-1 and MsSpätzle-4 were expressed throughout all developmental stages. MsToll-1 expression was highly in fat body and brain and MsSpätzle-4 was highly expressed in brain and Malpighian tubule. With increased larval density, MsToll-1 expression was markedly up-regulated. MsSpätzle-4 expression was found to be raised in larvae that were fed in high density (5 and 10 larvae per jar). Co-immunoprecipitation assays demonstrated that MsToll-1 interacted with MsSpätzle-4. Immune-related genes transcriptions were considerably reduced in high-density larvae MsToll-1 (or MsSpätzle-4) was silenced by dsRNA injection. Meanwhile, a discernible reduction in the survival rate of the larvae exposed to Bacillus thuringiensis infection with silence of MsToll-1 (or MsSpätzle-4) was observed. This study implies that prophylactic immunity was influenced by crowded larvae via modulating the Toll-Spätzle pathway in M. separata and allow for a new understanding of into density-dependent prophylaxis in insects.


Subject(s)
Insect Proteins , Moths , Animals , Larva/metabolism , Spodoptera/metabolism , Insect Proteins/metabolism , Moths/genetics , Immunity, Innate/genetics
18.
Int J Biol Macromol ; 264(Pt 2): 130842, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484820

ABSTRACT

Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that causes significant losses to the silkworm industry. Numerous antiviral genes and proteins have been identified by studying silkworm resistance to BmNPV. However, the molecular mechanism of silkworm resistance to BmNPV is unclear. We analyzed the differences between the susceptible strain 871 and a near-isogenic resistant strain 871C. The survival of strain 871C was significantly greater than that of 871 after oral and subcutaneous exposure to BmNPV. Strain 871C exhibited a nearly 10,000-fold higher LD50 for BmNPV compared to 871. BmNPV proliferation was significantly inhibited in all tested tissues of strain 871C using HE strain and fluorescence analysis. Strain 871C exhibited cellular resistance to BmNPV rather than peritrophic membrane or serum resistance. Strain 871C suppressed the expression of the viral early gene Bm60. This led to the inhibition of BmNPV DNA replication and late structural gene transcription based on the cascade regulation of baculovirus gene expression. Bm60 could also interact with the viral DNA binding protein and alkaline nuclease, as well as host proteins Methylcrotonoyl-CoA carboxylase subunit alpha, mucin-2-like protein, and 30 K-8. Overexpression of 30 K-8 significantly inhibited BmNPV proliferation. These results increase understanding of the molecular mechanism behind silkworm resistance to BmNPV and suggest targets for the breeding of resistant silkworm strains and the controlling pest of Lepidoptera.


Subject(s)
Bombyx , Nucleopolyhedroviruses , Animals , Bombyx/metabolism , Nucleopolyhedroviruses/physiology , Genes, Viral , Cell Proliferation , Insect Proteins/genetics , Insect Proteins/metabolism
19.
Dev Biol ; 509: 70-84, 2024 May.
Article in English | MEDLINE | ID: mdl-38373692

ABSTRACT

Many insects undergo the process of metamorphosis when larval precursor cells begin to differentiate to create the adult body. The larval precursor cells retain stem cell-like properties and contribute to the regenerative ability of larval appendages. Here we demonstrate that two Broad-complex/Tramtrack/Bric-à-brac Zinc-finger (BTB) domain transcription factors, Chronologically inappropriate morphogenesis (Chinmo) and Abrupt (Ab), act cooperatively to repress metamorphosis in the flour beetle, Tribolium castaneum. Knockdown of chinmo led to precocious development of pupal legs and antennae. We show that although topical application of juvenile hormone (JH) prevents the decrease in chinmo expression in the final instar, chinmo and JH act in distinct pathways. Another gene encoding the BTB domain transcription factor, Ab, was also necessary for the suppression of broad (br) expression in T. castaneum in a chinmo RNAi background, and simultaneous knockdown of ab and chinmo led to the precocious onset of metamorphosis. Furthermore, knockdown of ab led to the loss of regenerative potential of larval legs independently of br. In contrast, chinmo knockdown larvae exhibited pupal leg regeneration when a larval leg was ablated. Taken together, our results show that both ab and chinmo are necessary for the maintenance of the larval tissue identity and, apart from its role in repressing br, ab acts as a crucial regulator of larval leg regeneration. Our findings indicate that BTB domain proteins interact in a complex manner to regulate larval and pupal tissue homeostasis.


Subject(s)
Coleoptera , Metamorphosis, Biological , Morphogenesis , Transcription Factors , Tribolium , Animals , Coleoptera/metabolism , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Insect Proteins/metabolism , Juvenile Hormones , Larva/metabolism , Metamorphosis, Biological/genetics , Morphogenesis/genetics , Pupa/metabolism , Transcription Factors/metabolism , Tribolium/genetics , Regeneration/genetics
20.
Int J Biol Macromol ; 262(Pt 1): 130031, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331072

ABSTRACT

Plutella xylostella is an important cruciferous crop pest with a serious resistance to multiple insecticides, a novel natural compound, 2,3-dimethyl-6-(1-hydroxy)-pyrazine were isolated, that showed significant repellent activity against P. xylostella with olfactory system as a potential target. Eight odorant-binding proteins (OBPs) were determined as candidate target genes using RT-qPCR (Quantitative reverse transcription PCR), most of them were clustered with OBPs from Spodoptera frugiperda. Fluorescence competitive binding assays showed that PxylPBP2 (Pheromone binding protein) and PxylOBP3 had Ki values of 7.13 ± 0.41 µM and 9.56 ± 0.35 µM, indicating a high binding affinity to the pyrazine. Moreover, the binding style between these two OBPs and the pyrazine was determined as a hydrophobic interaction by using molecular docking. The binding between PxylPBP2 and the pyrazine was found to be more stable, and the carbon atoms of C-2 and C-3 in this pyrazine showed potential optimization characteristics. Both PxylPBP2 and PxylOBP3 were highly expressed in the antennae of both sexes. These results can be used to design and develop novel green pesticides with the pyrazine as the active or lead compound to reduce the utilization of chemical pesticides and postpone development of resistance.


Subject(s)
Moths , Pesticides , Receptors, Odorant , Female , Animals , Male , Molecular Docking Simulation , Odorants , Pyrazines/pharmacology , Spodoptera/metabolism , Pesticides/metabolism , Insect Proteins/metabolism , Receptors, Odorant/chemistry , Moths/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...